

Platelet-derived extracellular vesicles:

The What, the Who & the Why?

Dr. Yajhitha Ramman Chintala

Supervisors: Dr. Allison Waters, Dr. Claire Wynne, Dr. Steve Meaney, Mr. Fabian McGrath

Partnership

- First TU Dublin-IBTS Ph.D. project
- Supervisors: Dr. Allison Waters & Dr. Claire Wynne, Dr. Steve

Meaney, Mr. Fabian McGrath

 Collaboration with IBTS will support basic and applied sciences in transfusion and ultimately clinical outcomes- better blood products.

Irish Blood Transfusion Service Seirbhís Fuilaistriúcháin na hÉireann

DUBLINOUS COLLECTION OLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH BLIN TECHNOLOGICAL UNIVERSITY DUBLIN

> ESHI Griving Sustainability & Health Institute

The What: What are Extracellular vesicles (EVs)?

- Extracellular vesicles (EVs) are biological particles, that are generated naturally and released in large amounts from cells after exposure to various stimuli, such as hypoxia, hunger, and oxidative stress.
- Found in blood, urine, saliva, synovial fluid, etc.

The What: What are extracellular vesicles?

György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011;68:2667-8

DUBLISCOIL TECHNOLAÖICHTA DUBLISCOIL TECHNOLAÖICHTA DUBLISCOIL BUNGROICAL UNIGROICAL UNIGROICAL UNIGROICAL UNIGROICAL UNIGROICAL UNIGROICAL UNIGROICAL

The What: What are extracellular vesicles?

György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011;68:2667-8

Types of Extracellular vesicles

Platelet-derived EVs from Pooled platelet Pack – Nanoparticle tracking analysis

What do we know so far?

EVs are released and may partake in *intercellular communication*

Affect processes such as:

- Coagulation and thrombosis
- Angiogenesis
- Immunomodulation
- Inflammation

SCOIL TEICNEOLAÍOCHT

THE ROLE OF EVS IN CANCER, NEURODEGENERATIVE DISEASES AND CARDIOVASCULAR DISEASE.

Cheng, L., Hill, A.F. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov 21, 379–399 (2022). https://doi.org/10.1038/s41573-022-00410-w

Mechanism of stored RBC-derived EVs in TRIM in patients with cancer receiving transfusions

Transfusion-related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review) XINGYU MA, YANXI LIU, QIANLAN HAN, YUNWEI HAN, JING WANG, and HONGWEI ZHANG, DOI: 10.3892/ijo.2021.5288

Strategy of drug-loaded RBC EVs therapy

The Who: Platelet-derived EVs from apheresis donors

- Blood and blood-derived products are a scarce resource
 - must be used judiciously for the best clinical outcomes.
- During storage
 - deleterious changes- may harm the patient.
- Changes include the **release of extracellular vesicles** (PEV)
 - poorly understood.

The Why: Research Question

What biochemical and immunohaemostatic changes occur in platelet-derived EVs due to the preparation, processing and storage of blood components?

Is there a link between donor characteristics & platelet EV function?

Experimental Design

Results - Donor Full Blood Counts

Phase one cohort (n=18)

- Healthy males (24-56 y/o)
- O positive
- Apheresis donors

Parameter	Range	Median		
Haemoglobin (g/dL)	12.4 - 16.3	14.8		
HCT (L/L)	0.369 – 0.472	0.445		
MCV (fL)	84.7 - 96.3	89.6		
Platelets (x 10 ⁹ /L)	180 - 322	253		
MPV (fL)	8.2 - 10.7	9.9		
WBC (x 10 ¹² /L)	4.8 - 9.1	6.1		

<u>Results - Donor Full Blood Counts</u>

Parameter	Range	Median
Haemoglobin (g/dL)	12.4 - 16.3	14.8
HCT (L/L)	0.369 – 0.472	0.445
MCV (fL)	84.7 - 96.3	89.6
Platelets (x 10 ⁹ /L)	180 - 322	253
MPV (fL)	8.2 - 10.7	9.9
WBC (x 10 ¹² /L)	4.8 - 9.1	6.1

Biochemical characteristics of platelet EVs

Key Findings- Donor characteristics

	P-value	U		SE	EC	U		SI	EC	U		SI	EC
r		Protein		Protein		Cholesterol		Cholesterol		Triglycerides		Triglycerides	
Ag	ge	0.29926	0.227665	-0.171788	0.495488	0.290322	0.242529	0.266426	0.285219	0.042886	0.865824	-0.103101	0.683931
BN	MI	0.205904	0.412387	-0.110036	0.663816	-0.245562	0.326009	-0.21355	0.394853	-0.320318	0.19501	-0.413913	0.087714
Systolic	: Blood												
Pres	sure	0.019699	0.040676	0.129079	0.763512	-0.273387	0.788222	-0.23637	0.744826	0.272414	0.913015	0.049908	0.73499
Diastoli	c Blood												
Pres	sure	0.178294	0.581403	-0.039186	0.653789	-0.310907	0.835107	-0.265422	0.811866	-0.158291	0.510683	-0.315302	0.618018
Total co	ollection												
time	(min)	0.179583	0.475823	-0.348481	0.156418	0.240842	0.335687	0.234787	0.348344	-0.308719	0.212589	-0.265351	0.287241

Donor mean platelet volume appears correlated with protein content of isolated EVs

Physical characterization of platelet Evs-Dynamic light scattering

Next Steps

- Size: Nanoparticle tracking analysis (NTA)
- Structure: Transmission electron microscopy (TEM)
- Surface characteristics: Flow cytometry Cd62p, Annexin V
- Functional Assays: Thrombin generation assay
- Immunomodulatory activity: Multiplex cytokine assays
- Relationship between EVs and miRNA: GeneChip miRNA Assay
- Proteomics profiling: Trapped ion mobility time of fight mass spectrometer connected to a nano-LC chromatography.

Future Impact

- Insight into using platelet-derived EVs as a **quality marker** for platelet packs.
- Insight into mechanisms that influence blood components from the point of donation through to transfusion.
- Better understanding of physiological and pathological implications of plateletderived EVs.
- Characterise the immunohaemostatic properties of platelet-derived EVs and donor variability in platelet packs which could be directed to various clinical situations (eg. procoagulant EVs to bleeders rather than cancer patients).

Thank You. Go raibh maith agaibh.

Contact Information

Dr. Yajhitha R. Chintala (MBBS,MD)

Yajhitha.Chintala@ibts.ie

Desk 83, ESHI Building, TU Dublin Grangegorman, Dublin

+353-899701444